

Universal Sloppiness in Complex Biology

Implications for Modeling and Evolution

Ryan Gutenkunst

Josh Waterfall, Fergal Casey, Chris Myers, and Jim Sethna

Computational Biology Student Seminar February 9th, 2007

Complex Biology

Tyson group's model has

Budding yeast

cell cycle

131 free parameters

Chen et al. Mol. Biol. Cell 15:3841-3862 (2004)

Parameter Sensitivities

 $\chi^2(\theta)$: (scalar) measure of the difference in model behavior between parameters θ and θ^* .

Quadratic approximation:

$$H_{i,j} \equiv \left. \frac{\partial^2 \chi^2 (\theta)}{\partial \log \theta_i \partial \log \theta_j} \right|_{\theta^*}$$

Sloppiness in Biology

- Tyson 1991 (9)
- Zwolak 2005 (11)
- Goldbeter 1991 (13)
- Vilar 2002 (15)
- Edelstein 1996 (17)

- ▲ Kholodenko 2000 (21)
- ▲ Lee 2003 (22)
- ▲ Leloup 1999 (38)
- ▲ Brown 2004 (48)
- △ von Dassow 2000 (49)
- Ueda 2001 (49)
- Locke 2005 (61)
- Zak 2003 (97)
- Curto 1998 (105)
- □ Chassagnole 2002 (119)
- ♦ Chen 2004 (131)
- ◆ Sasagawa 2005 (234)

$$\chi^{2}(\theta) \propto \sum_{\substack{\text{species } s \\ \text{conditions } c}} \frac{1}{T_{c}} \int_{0}^{T_{c}} \left[\frac{y_{s,c}(\theta,t) - y_{s,c}(\theta^{*},t)}{\sigma_{s}} \right]^{2}$$

Sloppiness Elsewhere

Origins

Redundant basis for parameters

Waterfall et al. Phys. Rev. Lett. 97:15060 (2006), arXiv:cond-mat/0605387

† Cyrus Umrigar †† Georg Hoffstaetter, Chris Mayes

Falsifiable Predictions

Calculate prediction uncertainties over an ensemble of parameter sets consistent with available data.

Growth factor signaling in PC12 cells

48 parameters

Brown et al., Phys. Biol. 1:184 (2004)

Refining Predictions

Loosely constrained Optimized prediction experimental design

Usefully tight prediction

Casey et al. *IEE Proc. Sys. Biol.* in press, arXiv:q-bio.MN/0610024

SloppyCell

http://sloppycell.sourceforge.net

- Notable features
 - System Biology Markup Language import/export
 - Sensitivity integration $(dy(\theta,t)/d\theta_i)$
 - Parameter ensembles Markov-Chain Monte-Carlo with importance sampling
 - Parallel execution via MPI
 - F2Py interface to Fortran DAE integrator
- with Jordan Atlas, Bob Kuczenski and Kevin Brown

Hypothesis: Fitness is Sloppy

Berman and Wang J. Fluid Mech. in press

Mezey and Houle Evolution 59:1027 (2005)

Logsdon et al. in preparation

Our Evolution Model

Sloppy fitness contours in biochemical parameter space optimum current chemotype"

Fisher's Geometrical Model (1930)

Circular fitness contours in "trait" space

Connecting to Experiments

$$P_{i \to j} = \frac{1 - (W_i / W_j)^2}{1 - (W_i / W_j)^{2N}}$$

Sella and Hirsch

PNAS 102:9541 (2005)

Observe the first few adaptations of a microbial population to a new environment.

We seek analytic expressions for the distribution of fitness changes, in the Strong-Selection, Weak-Mutation limit.

Hypothesis: Population will often hop onto narrow ridge of high fitness. Finite population size may then become important.

Linear Response

How does a population respond to gradual changes in the underlying fitness landscape?

Expand initial state into eigenvectors of the Markov process. Convergence dominated by the smallest eigenvalues.

$$\rho(\theta, t) = \rho^*(\theta) + e^{-\lambda_n t} c_n \rho_n(\theta)$$

Conclusions

Thanks

Sloppiness is universal in complex biology.

Consequently, collective parameter fits most efficiently constrain model predictions.

We're exploring the implications for evolution in a simple model.

Sloppiness Eric Siggia

John Guckenheimer

Modeling
Rick Cerione
Jon Erickson

EvolutionCarl Franck

